Limit Theorems for Triangular Urn Schemes
نویسنده
چکیده
We study a generalized Pólya urn with balls of two colours and a triangular replacement matrix; the urn is not required to be balanced. We prove limit theorems describing the asymptotic distribution of the composition of the urn after a long time. Several different types of asymptotics appear, depending on the ratio of the diagonal elements in the replacement matrix; the limit laws include normal, stable and Mittag-Leffler distributions as well as some less familiar ones. The results are in some cases similar to, but in other cases strikingly different from, the results for irreducible replacement matrices.
منابع مشابه
Limit Theorems for Random Triangular Urn Schemes
In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic c...
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملLocal limit theorems for finite and infinite urn models
Local limit theorems are derived for the number of occupied urns in general finite and infinite urn models under the minimum condition that the variance tends to infinity. Our results represent an optimal improvement over previous ones for normal approximation.
متن کاملA functional central limit theorem for a class of urn models
We construct an independent increments Gaussian process associated to a class of multicolor urn models. The construction uses random variables from the urn model which are different from the random variables for which central limit theorems are available in the two color case.
متن کاملCentral limit theorems for a class of irreducible multicolor urn models
We take a unified approach to central limit theorems for a class of irreducible urn models with constant replacement matrix. Depending on the eigenvalue, we consider appropriate linear combinations of the number of balls of different colors. Then under appropriate norming the multivariate distribution of the weak limits of these linear combinations is obtained and independence and dependence is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005